
Enhancements to the DODS-Web Map Server Gateway

D. Holloway, P. Cornillon, J. Gallagher
Data Access Software LLC

P.O.Box 6, Saunderstown, RI 02874, U.S.A
C. Lynnes, G. Serafino, P. Sweatman, R. Mullinix

NASA Goddard Space Flight Center
Code 902, Greenbelt, MD, 20771

Abstract: The OpenGIS standard for web-based geographic

information systems (GIS) has shown promise for
implementing wide-area distributed GIS. However, making
existing numerical data available as maps can be time-
consuming and expensive, especially for large data archives.
The map transformation process requires extraction of a
subset from data files, interpolation, representation as a
raster image and in some cases reprojection. We use the
Distributed Oceanographic Data System (DODS) as an
underlying subsetting engine with a “gateway” server
providing map transformation services. This gateway server
is designed to support plug-and-play modules for
interpolation, rasterization and reprojection. In addition, the
gateway, originally developed to the OpenGIS Web Map
Server (WMS) 1.0 specification, is being revised to the WMS
1.1.0 specification. On completion, it will be included with
the standard DODS distribution. Consequently, data
providers who are already serving data using DODS will be
able to add OpenGIS map capabilities cheaply and easily.
The plug-and-play module capability supports both object-
oriented C++ modules and standalone programs. These
standalone programs are easy to develop and test
independently of the gateway; this capability also makes it
easier to add in commercial or third-party programs. A
generic standalone program has been developed to display
color-slice maps for scalar data, arrow plots for two-
dimensional vector data, and RGB rendering for three-
component data.

I. INTRODUCTION

The DODS-WMT Gateway project grew out of
fortuitous similarities in functionality and protocol
between the Distributed Oceanographic Data System
(DODS)[1] and the Web Map Server (WMS) of the
OpenGIS Consortium (OGC)[2]. The DODS began as an
attempt to provide oceanographic data stored in a variety
of formats on distributed servers, while WMS is targeted at
Geographic Information Systems (GIS) users. However,
both systems standardize data transport so that users can
use their favorite analysis clients; both support spatial
subsetting at the server; and both use the Hypertext
Transfer Protocol (HTTP) and overloaded Universal
Resource Locators (URLs) for the request protocol. It thus
seemed useful to adapt DODS servers to service WMS
requests, allowing data centers to maintain enhanced
DODS servers for both DODS and WMS requests. The

ability to leverage the diverse formats and subsetting
supported by DODS for WMS duty is of special interest to
the Goddard Distributed Active Archive Center (DAAC), a
component of NASA’s Earth Observing System with many
datasets already available through DODS.

II. WEB MAP SERVER ARCHITECTURE

The DODS WMS gateway comprises two key functional

components: service capabilities advertisement and map
generation. The first of these is the ability to publish the
operations that the gateway is capable of performing. In
response to a “GetCapabilities” request, the gateway
produces an XML response describing the data and
operations available for that service instance. The format
and content of the Capabilities XML document are defined
by Document Type Definitions (DTD) specific to different
revisions of the WMS Implementation Specification. (The
current specification, revision 1.1.1, differs in several ways
from the initial revision 1.0.0 but is largely similar to
revision 1.1.0[3], the currently supported version of the
DODS WMS gateway.)

The most complex task of a Web Map Server is the set
of operations to transform data into maps in response to a
“GetMap” request. The server accesses and extracts the
data for the client’s request using the sample dimensions
provided by the client or the default values stored in the
server’s capabilities XML document. The server also
interpolates and may reproject the layer to conform to the
spatial reference system (SRS) requested by the client.
Map stylization operations then create the requested map
visualization, which is encoded into the client’s requested
output format and returned to the client.

III. DODS-WMS GATEWAY ARCHITECTURE

The distinguishing feature of the DODS-WMS gateway

is the use of the DODS Data Access Protocol (DAP) to
provide access to distributed data sources in a variety of
storage formats, using an intermediate data model. The
DAP also supports subsetting, reducing transmission
requirements for input data layers, and since the DAP
provides remote access to the input data, the data need not
reside with the gateway server. This enables the gateway
to combine local and remote data to create new map

visualizations not possible with local data repositories
alone, similar to an OGC cascading map server.

The DODS-WMS gateway provides OGC WMS
compliant maps made from diverse sets of input data,
using different map transformations depending on the
OGC request. Rather than add each transformation to the
gateway code, external “plug-and-play” specialization
modules are supported for map transformations. The
“plug-and-play” feature uses an XML-based configuration
mechanism to provide at runtime the information needed
by the gateway server to instantiate and interoperate with
external modules. Thus, new modules can be added
without changing the server code, allowing the addition of
new map visualizations, spatial reference systems and
output map formats with no service interruption.

Fig. 1 shows how the DODS-WMS Gateway
components interact with other software in response to a
WMS request. A WMS client sends a request over HTTP
to the DODS-WMS Gateway server. The HTTP server
passes the request via Common Gateway Interface (CGI)
to the gateway software. The gateway acquires the data
from a DODS server using the DODS Data Access
Protocol (DAP) and then converts them into a mapped
visualization matching the projection, bounds, image size
and format requested by the client (Fig. 2).

httpd

Unix WMT Server
WMT Client

Unix DODS Server

httpd

DODS
Server

HDF and
binary datasets

DODS-WMT
Gateway

Processing
Modules

OpenGIS
Client App TCP/IP

HTTP
WMT

CGI

Data Access Protocol

TCP/IP
HTTP
DAP

CGI

WMT/DODS Gateway

Fig. 1. Architecture of the DODS-WMS Gateway.

Fig. 2. Map visualization generated by DODS-WMS Gateway for global

ground temperature, skin temperature of the surface (sea surface
temperature over water) from the Data Assimilation System’s 2-D late-

look synoptic assimilation.

IV. CLASSES IN THE DODS-WMS GATEWAY

The DODS-WMS Gateway employs a number of C++

classes to satisfy a WMS request. These classes store and
advertise the server’s capabilities, provide access to and
validate the client request parameters, and orchestrate the
operations to generate the requested map. The rest of the
gateway consists of the external “plug-and-play”
specialization modules to support the spatial reference,
visualization, and output format operations required for
generating the requested map.

A. MapRequest Class

The MapRequest class encapsulates the behavior to store
and access the client request for use by the gateway server.
The class is also tasked with validating the client’s request
against the server’s advertised capabilities, throwing an
exception for malformed requests. The gateway server
catches any MapRequest exception, constructs a valid
exception response and returns it to the client application.
The MapRequest class also identifies any use of “default”
values for sample dimensions, as well as vendor specific
parameters (VSP), maintaining that information for use by
the classes performing the map transformations. Since the
MapRequest class provides a discrete interface between
the gateway server and the request syntax, changes in the
WMS request parameters revision or usage are isolated to
the MapRequest class, facilitating support for future WMS
revisions. Since the MapRequest class provides exclusive
access to the client request parameters, the gateway server
passes a MapRequest instance to the classes responsible
for generating the map transformations. This standardizes
the parameters passed between various modules
instantiated by the gateway server, and isolates all access
to the map request parameters to a single class instance.

B. Capabilities Class

The Capabilities class encapsulates the behavior to
advertise the server’s map layers and operations that the
service is capable of performing on them. The server’s
capability information is stored in an external XML
document conforming to the WMS revision 1.1.0
Capabilities DTD. Using standard XML parsers, the
Capabilities class transforms the external XML document
into an internal Document Object Model (DOM)
representation. The class provides accessor methods that
traverse the DOM to retrieve any desired element or
attribute, from the server’s capability XML representation.

The MapRequest uses the Capabilities class to validate
client requests against advertised capabilities, and to
identify the default values for sample dimensions not
specified in client requests. It also provides a discrete
interface between the gateway server and the WMS
Capabilities XML Specification, so that future revisions of
the Capabilities XML specification are limited to one

class. Since the Capabilities class provides sole access to
the server’s capability information, the gateway server
passes a reference to a Capabilities class instance to the
classes responsible for generating the map transformations.

As external “plug-and-play” modules were
implemented, the initial configuration XML began to
resemble elements of the existing capabilities XML
representation. Rather than duplicate the XML
representation and traversal methods of the Capabilities
class, the local configuration information was merged into
the gateway server’s capabilities XML document and the
Capabilities class was extended with accessor methods to
the configuration elements. This reduces the installation
and maintenance burden on a server’s administrator to a
single XML document.

C. Plugin and PluginFactory

 The external “plug-and-play” implementation comprises
three elements: C++ wrapper classes to provide a common
interface to the external specialization modules; a
mechanism to load those classes at runtime; and local
configuration information defining which external modules
are required to satisfy the client’s request.

The Plugin and PluginFactory classes allow the gateway
server to load C++ classes at runtime. For the “plug-and-
play” mechanism to operate, the C++ wrapper class uses
virtual constructors and a method named “maker” that
returns a new instance of the class. The class definition for
the external “plug-and-play” module is compiled and
stored in a shareable object library. Using configuration
information from the server’s capabilities XML, the
PluginFactory class selects the correct shareable object
library to load an instance of the specialization module at
runtime. The Plugin class provides the interface to the
specialization classes instantiated by the PluginFactory.
Fig. 3 shows a Unified Modeling Language (UML) class
diagram for the Plugin and PluginFactory classes and an
example C++ wrapper class for a DEG specialization.

D. Specialization Classes

To satisfy a client’s map request, the gateway server

performs several discrete operations on the input data layer
to create the requested map. These include SRS operations
that extract the requested spatial subset from the data layer,
interpolate and (sometimes) reproject to conform to the
client’s requested SRS. The resulting data are then styled
into a visual representation and encoded into the requested
output map format.

The external “plug-and-play” mechanism to support
these operations relies on external specialization modules
wrapped by C++ classes used by the gateway server to
instantiate the specialization at runtime. The well-defined
interface provided by the wrapper classes aids
interoperability by standardizing arguments and argument

passing mechanisms, while allowing the external
specializations to be highly customized.

+Plugin(in library_name : String)
+instantiate() : SpecializationType

Plugin

SpecializationType

+PluginFactory(in name : String, in library_name : String)
+addMapping(in name : String, in library_name : void)
+get(in name : String) : extern "C"

PluginFactory

extern "C"

*

1

Plugin is used to instantiate an object
whose implementation is stored in a shared object.

Specialization-Type is the type of the object
to be instantiated.

+maker() : extern "C" DEG*

«interface»
DEG

+maker() : extern "C" DEG*

«implementation class»
ColorSlice

ColorSlice is an external
specialization implementing DEG.
The implementation uses a C++

wrapper to implement the interface,
and is stored as a shared object.

Fig. 3. Class diagram for “plug-and-play” mechanism.

The external specialization modules can be C++

modules or standalone programs. For standalone
programs, the C++ wrapper class provides the interface
between the gateway server classes and the external
executable. The wrapper provides the input data to and
executes the program, returning the processed data to the
gateway server. So that a single C++ wrapper class can
support many similar standalone programs or provide
different arguments to the same standalone program, an
optional CDATA element is included in the configuration
XML for the specialization elements. The free-text nature
of the CDATA elements in the configuration XML
supports command-line arguments or other textual
information needed to execute the standalone program.
Since the specialization elements in the configuration
XML are coupled to data layer names, parameters to the
external standalone programs can be uniquely defined for
each layer advertised by the gateway. Optionally, because

the gateway server supports layer inheritance as defined in
the WMS Capabilities XML specification, specializations
can be defined for a parent layer node to be inherited by its
children unless explicitly overridden.

The intent of the external “plug-and-play” standalone
modules and the configuration XML is to facilitate adding
new standalone executables without requiring new C++
wrappers to be customized each time. Also, support for
external standalone programs allows nonprogrammers to
incorporate higher-level languages (e.g. IDL, Matlab), as
well as third-party programs that may not come with
source code or libraries, to provide the desired
specializations for generating maps.

1) SRS (Spatial Reference System) The SRS
specialization modules ensure that the generated map
transformations conform to the client’s requested spatial
reference system. Since the client’s requested SRS may
differ from the “native” SRS of the input data layer, the
specialization may need to perform interpolation and
reprojection operations on the input data layer. To enable
the use of different interpolation and reprojection
techniques, these operations may be encoded as external
“plug-and-play” modules as well.

An operation performed by all SRS specializations is to
transform the client’s requested spatial bounding box
(BBOX) and other sample dimension request parameters
into a form consistent for accessing the advertised data
layer. For input data layers accessed using the DODS
DAP, the result of this operation is a fully qualified DODS
URL, or potentially a set of URLs for client requests that
access multiple files. While the gateway facilitates access
to data by using the DODS DAP, the server design does
not require the DAP to be the only access method for the
input data layers. To support DODS access, a Layer class
encapsulates the access methodology required to interact
with the DAP class libraries, and is used by the SRS
specializations for DODS-accessible data layers.

2) CatalogURL The majority of DODS-accessible
datasets that could be served using the DODS-WMS
Gateway consist of multi-file data archives. The
CatalogURL specialization provides a customizable
mechanism to translate a WMS client’s sample dimension
request parameters into a DODS inventory request. The
CatalogURL specialization returns a set of base DODS
URLs representing the granules associated with the client’s
request parameters.

3) DEG (Display Element Generator) The DEG
specialization modules create the client’s requested map
style, or visualization, using the output of the SRS
specialization modules. A generic DEG specialization
module has been developed to display color-slice maps for
scalar data, using an external palette file. Future plans
include contour plots for scalar data, arrow plots for two-

dimensional vector data and RGB rendering for three-
component data. Since the DEG specializations can be
implemented as standalone external programs, they can be
developed and tested independently of the gateway. This
also makes it possible to use commercial or third-party
programs for the map visualizations.

4) Format The Format specialization modules encode the
styled map visualizations produced by the DEG
specializations into the client’s requested output response
format, e.g. JPEG. They support the WMS feature
allowing a client to request multiple map layers in one
request, with a single output response containing all
requested layers. The server maintains the order of the
requested layers using the leftmost layer request parameter
as the bottommost map in the output format response.

V. ORCHESTRATING THE MAP TRANSFORMATION

While the specific operations required to perform map

transformations on the input data layers may be complex,
managing the process is straightforward. To satisfy a
WMS client request, the gateway server’s main class
creates a MapRequest and Capabilities class instance.
The server initially determines the client’s requested
service and request type.

:Map

:Plugin

:PluginFactory

:MapRequest

:Capabilities

:Specializations Classes

For-each requested map layer

Instantiate the corresponding
external specialization module

getSpecializationInfo()

getLayerRequests()

requestType(Map)

Fig. 4. Collaboration Diagram for Map Class

Fig. 4 shows the collaboration between gateway classes
to satisfy a “GetMap” request. The gateway server passes
references to MapRequest and Capabilities class instances
to the Map class. The Map class uses MapRequest and
Capabilities information to determine which “plug-and-
play” specialization modules will satisfy the client’s map
request. Then, for each requested layer/style pair, external
“plug-and-play” specialization modules are instantiated by
the Plugin and PluginFactory classes. Each instantiated
specialization module is instructed to perform its operation
and the resulting map visualizations are passed to a “plug-
and-play” Format specialization. On completion, the
gateway server returns the formatted output response to the
client application and exits.

With slight modification to the MapRequest and
Capabilities classes, additional “plug-and-play” Format
specializations and a Coverage class to mimic the behavior
of the Map class, the gateway server can be easily
extended to support OGC Web Coverage Service requests.
Also, combining “plug-and-play” visualization modules
with a Coverage service can extend the gateway server to
support OGC Coverage Portrayal Service requests.

VI. CONCLUSION

The combination of “plug-and-play” specialization

modules, external XML configuration information, and the
DODS Data Access Protocol provides a general, cost-
effective and flexible approach to facilitate serving a wide
range of earth science data to OpenGIS client applications.
External, standalone “plug-and-play” specialization
modules make it easy to develop and test new visualization
and format operations, or make use of commercial and
third-party applications. Over time, a library of
specialization modules should accumulate so that
eventually, a dataset can be added simply by modifying a
configuration file. Integrating the server’s configuration
XML with its capabilities XML allows the gateway server
to be highly customizable. Use of the DODS DAP
facilitates access to data by reducing the format handling
requirements for gateway server, and provides a subsetting
capability for the input data layers. Also, the DAP enables
gateways that are not co-located with the data underlying
the advertised maps.

The enhancements to the DODS-WMS Gateway for
compliance with revision 1.1.0 of the WMS
Implementation Specification provide a number of
benefits. These include enhanced exception handling and
informational messages to send back to the requesting
client application, additional support for refining the layer
sample dimension specifications with clearly defined
default value usage, and better support for customization
of SRS operations for individual data layers. Additionally,
as the other OGC web service specifications mature, the
enhancements to support the map request and service

capabilities provide a foundation to support OGC Web
Coverage, and Coverage Portrayal Services.

The greatest benefit resulting from the enhancement
effort is the new support for external “plug-and-play”
specialization modules. This will facilitate adding new
operations to the gateway server, potentially by
nonprogrammers, for generating new map transformations
or simply serving additional data products. These new
operations can be added to an operational gateway server
with minimal interruption in service, and do not require
modifications to the gateway server software or the
software to be rebuilt to support these new operations.

As part of the DODS-WMS Gateway enhancement
effort, the gateway server is being packaged for
distribution as part of the suite of applications freely
available from the DODS project web site. This includes
technical documentation describing the design and
operation of the gateway server, as well as a guide to
developing new external “plug-and-play” specialization
modules. Documentation is also provided for installation
of the gateway server, the combined configuration and
capabilities XML document, and describing the example
“plug-and-play” specialization modules. The software
itself will be freely available for download in both binary
and source distributions from the DODS project web site.

Acknowledgements

We thank the Earth Science Technology Office at

NASA for funding the development of the DODS-WMS
Gateway.

REFERENCES

[1] J. Gallagher and G. Milkowski, 1995. Data Transport
Within The Distributed Oceanographic Data System,
Fourth International World Wide Web Conference,
December 11-14, Boston, Massachusetts, USA,
http://www.w3.org/Conferences/WWW4/Papers/67/

[2] OpenGIS Consortium, 2000. “OpenGIS® Web Map
Service Interface Implementation Specification,
Version 1.0.0”, http://www.opengis.org/techno/specs/
00-028.pdf.

[3] OpenGIS Consortium, 2001. “OpenGIS® Web Map
Service Interface Implementation Specification,
Version 1.1.0”, http://www.opengis.org/techno/specs/
01-047r2.pdf.

